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Solution prObIem -3 I Forced Vibrations
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See in 17.3, p. 1159, the equation of motion: m
And set c=0

The auxiliary equation for the homogenous equation has two imaginary roots fjo so

the solution is: :
X (f):clcos witesmwt
C

But the natural frequency of the system equals the
frequency of the external force, so try xp(r):r(Acos wit+Bsin wt) . Then we need
2 2 : .
m(2«w B—w At)cos wt—-m(2w A+w Bt)sin @ t+kAtcos w t+kBtsin wf:Focos wt or meB:FO and

. 2 2 . 2 o
-2mw A=0 (noting -mw A+k4=0 and -mw B+kB=0 since (v =k/m ). Hence the general solution 1s

x(f):c.“]cos w r+{:25_-;i11 w r+[Fﬂr,-"(2mw )]sin Wt



Calculus3 2014 — solutions problems 4-6 resit exam July 10 2014

L(a) 2 =420 < 2 < 6,t > 0,2(0,t) = u(6,t) = 0,u(r,0) =
30,u(x,t) < M. Let u = X(x)T(t) plus boundary conditions —
u(z,t) = ¥ B,,e T t30sin(mrx/6), hence 30 = ¥ B, sin(mnz/6)

and B, = %jg 30sin(mmz/6)dr = 221 — cos(mm)]

mar

and

(b) Now u,(0,t) = u,(6,t) = 0; the answer is obviously 30 degrees ...

. Even function, so b, = 0 and a, = % [{* f(z)cos(nmz/L)dz =
ap = 1/3 and (partial integration) a, = (—1)"—s=3; = = 1 yields the

n2g2s

required sum.

. Fla) = 2 f(u)e "du = ji; o€ “du which equals "ng"} Within
the € interval F'(a) becomes M and the limit of this fraction goes
to 1, as can be proven with the I'Hopital theorem. This is the Dirac-0

function.



