Solution problem -1

(a) $\quad a_{n}=\frac{3+5 n^{2}}{n+n^{2}}=\frac{\left(3+5 n^{2}\right) / n^{2}}{\left(n+n^{2}\right) / n^{2}}=\frac{5+3 / n^{2}}{1+1 / n}$, so $a_{n} \rightarrow \frac{5+0}{1+0}=5$ as $n \rightarrow \infty$. Converges
(b)

$$
\begin{aligned}
& y=\left(1+\frac{2}{x}\right)^{x} \Rightarrow \ln y=x \ln \left(1+\frac{2}{x}\right), \text { so } \\
& \lim _{x \rightarrow \infty} \ln y=\lim _{x \rightarrow \infty} \frac{\ln (1+2 / x)}{1 / x} \underline{=} \lim _{x \rightarrow \infty} \frac{\left(\frac{1}{1+2 / x}\right)\left(-\frac{2}{x^{2}}\right)}{-1 / x^{2}}=\lim _{x \rightarrow \infty} \frac{2}{1+2 / x}=2 \Rightarrow \\
& \lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{x}=\lim _{x \rightarrow \infty} e^{\ln y}=e^{2}, \text { so by Theorem } 3, \lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right)^{n}=e^{2} . \text { Converges }
\end{aligned}
$$

Solution problem -2

If $a_{n}=\frac{x^{n}}{1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n-1)}$, then
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{1 \cdot 3 \cdot 5 \cdots \cdots \cdot(2 n-1)(2 n+1)} \cdot \frac{1 \cdot 3 \cdot 5 \cdots \cdots \cdot(2 n-1)}{x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x|}{2 n+1}=0<1$. Thus, by
the Ratio Test, the series $\sum_{n=1}^{\infty} \frac{x^{n}}{1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n-1)}$ converges for all real x and we have $R=\infty$ and $I=(-\infty, \infty)$.

Solution problem -3

See in 17.3, p. 1159, the equation of motion : $\quad m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=F(t)$ And set c=0

The auxiliary equation for the homogenous equation has two imaginary roots $\pm \mathrm{j} \omega$ so the solution is:

$$
x_{c}(t)=c_{1} \cos \omega t+c_{2} \sin \omega t
$$

But the natural frequency of the system equals the
frequency of the external force, so try $x_{p}(t)=t(A \cos \omega t+B \sin \omega t)$. Then we need
$m\left(2 \omega B-\omega^{2} A t\right) \cos \omega t-m\left(2 \omega A+\omega^{2} B t\right) \sin \omega t+k A t \cos \omega t+k B t \sin \omega t=F_{0} \cos \omega t$ or $2 m \omega B=F_{0}$ and $-2 m \omega A=0$ (noting $-m \omega^{2} A+k A=0$ and $-m \omega^{2} B+k B=0$ since $\omega^{2}=k / m$). Hence the general solution is

$$
x(t)=c_{1} \cos \omega t+c_{2} \sin \omega t+\left[F_{0} t /(2 m \omega)\right] \sin \omega t
$$

Calculus3 2014 - solutions problems 4-6 resit exam July 102014

1. (a) $\frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}}, 0 \leq x \leq 6, t \geq 0, x(0, t)=u(6, t)=0, u(x, 0)=$ $30, u(x, t)<M$. Let $u=X(x) T(t)$ plus boundary conditions \Longrightarrow $u(x, t)=\sum B_{m} e^{-4 m^{2} \pi^{2} t / 36} \sin (m \pi x / 6)$, hence $30=\sum B_{m} \sin (m \pi x / 6)$ and $B_{m}=\frac{2}{6} \int_{0}^{6} 30 \sin (m \pi x / 6) d x=\frac{60}{m \pi}[1-\cos (m \pi)]$
and
(b) Now $u_{x}(0, t)=u_{x}(6, t)=0$; the answer is obviously 30 degrees \ldots
2. Even function, so $b_{n}=0$ and $a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos (n \pi x / L) d x \Longrightarrow$ $a_{0}=1 / 3$ and (partial integration) $a_{n}=(-1)^{n} \frac{4}{n^{2} \pi^{2}} ; x=1$ yields the required sum.
3. $F(\alpha)=\int_{-\infty}^{\infty} f(u) e^{-i \alpha u} d u=\int_{-1}^{1} \frac{1}{2 \epsilon} e^{-i \alpha u} d u$ which equals $\frac{\sin (\alpha)}{\epsilon \alpha}$. Within the ϵ interval $F(\alpha)$ becomes $\frac{\sin (\alpha \epsilon)}{\epsilon \alpha}$ and the limit of this fraction goes to 1 , as can be proven with the l'Hôpital theorem. This is the Dirac- δ function.
